Если вписать квадрат в окуржность, то его диагональ будет диаметром этой окружности (угол опирающийся на диаметр - прямой). Таким образом длина диагонали квадрата вписанного в окружность: , где a - сторона квадрата. Так как диагональ есть диаметр то она равна двум радиусам: . Тогда выразим длину стороны квадрата:
Если вписать окружность в квадрат, то ее радиус будет равен половине стороны квадрата: . Подставив предыдущую формулу в данную, получим: .
Таким образом мы получили бесконечно убывающую геометрическую прогрессию радиусов окружностей. Первый элемент , знаменатель прогресии .
Сумма всех радиусов равна .
Тогда сумма длин всех окружностей: